US009229717B2

a2z United States Patent (10) Patent No.: US 9,229,717 B2
Mehrara et al. 45) Date of Patent: Jan. 5, 2016
(54) REGISTER ALLOCATION FOR CLUSTERED 2005/0278707 Al* 12/2005 Guilfordccccccevnne. 717/130
MULTI-LEVEL REGISTER FILES 2007/0074196 Al* 3/2007 Ogawacetal. 717/160
2007/0168581 Al* 7/2007 Kleinetal. ... 710/31
. . 2010/0037037 Al* 2/2010 Leeetal. ..o 712/205
(71) Applicant: NVIDIA Corporation, Santa Clara, CA 5011/0107068 Al 5/2011 Mitran et al.
(Us) 2012/0242673 Al* 9/2012 Udayakumaran 345/522
(72) Inventors: Mojtaba Mehrara, San Francisco, CA FOREIGN PATENT DOCUMENTS
(US); Gregory Diamos, San Jose, CA
(US) ™ 201342240 A 11/2013
(73) Assignee: NVIDIA Corporation, Santa Clara, CA OTHER PUBLICATIONS
(US) Jang et al. “A Code Generation Framework for VLIW Architectures
(*) Notice: Subiect to anv disclaimer. the term of this with Partitioned Register Banks,” Proceedings of 3rd. Int. Conf. on
’ at eJnt s ethn ded or a d"us ted under 35 Massively Parallel Computing Systems, Apr. 1998, 8 pages.
% S.C. 154(b) by 0 da J Hoogerbrugge et al. “Instruction Scheduling for TriMedia,” The
e (b) by ys. Journal of Instruction-Level Parallelism—JILP, vol. 1, http://www.
. jilp.org, 1999, pp. 1-21.
(21) Appl. No.: 13/710,909 Kailas et al. “CARS: A New Code Generation Framework for Clus-
o tered ILP Processors,” HPCA ’01 Proceedings of the 7th Interna-
(22) Filed: Dec. 11, 2012 tional Symposium on High-Performance Computer Architecture,
. .. IEEE Computer Society Washington, DC, USA, ISBN: 0-7695-
(65) Prior Publication Data 1019-1, © 2001, pp. 133-143.
US 2014/0164745 Al Jun. 12, 2014 (Continued)
(51) Imt.ClL . .
GOGF 9/45 (200601) Prlmary Examiner — Don Wong
GO6F 9/30 (2006.01) Assistant Examiner — Daxin Wu
GOG6F 9/38 (2006.01) (74) Attorney, Agent, or Firm — Artegis Law Group, LLP
(52) US.CL
CPC ... GOGF 9/30098 (2013.01); GO6F 93012 (57) ABSTRACT
(2013.01); GO6F 9730138 (2013.01); GOGF A method for allocating registers within a processing unit. A
9/3891 (2013.01) compiler assigns a plurality of instructions to a plurality of
(58) Field of Classification Search processing clusters. Each instruction is configured to access a
None) first virtual register within a live range. The compiler deter-
See application file for complete search history. mines which processing cluster in the plurality of processing
. clusters is an owner cluster for the first virtual register within
(56) References Cited the live range. The compiler configures a first instruction
U.S. PATENT DOCUMENTS included in the plurality of instructions to access a first global
virtual register.
8,448,157 B2* 5/2013 Mitranetal. 717/151
2004/0255109 A1* 12/2004 Nakajimaccccccee.. 713/1 21 Claims, 14 Drawing Sheets

| CLUSTER ASSIGNMENT

600

7

FROM
STEP 510

s
l

| INSTRUCTION SCHEDULING |\,\5m

l

VIRTUAL REGISTER
PARTITIONING

l

LOCAL REGISTER FILE
ALLOCATION

l

515

520

STEP 615

| ASSIGN OWNER CLUSTERS

|.\, 802
l 604
| OWNER CLUSTER WRITE TRANSFORMS I’“

|

606
| NON-OWNER CLUSTER READ TRANSFORMS I—_’

l

| NON-OWNER CLUSTER WRITE TRANSFORMS I—\l

608

MASTER REGISTER FILE

ALLOCATION [~ 525

TO
STEP 520

US 9,229,717 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Terechko et al. “Cluster Assignment of Global Values for Clustered
VLIW Processors,” CASES 03 Proceedings of the 2003 Interna-
tional Conference on Compilers, Architecture and Synthesis for
Embedded Systems, ACM New York, NY, USA, ISBN: 1-58113-
676-5, © 2003, pp. 32-40.

Lin et al. “PALF: Compiler Supports for Irregular Register Files in
Clustered VLIW DSP Processors,” Concurrency and Computation:
Practice & Experience—Current Trends in Compilers for Parallel
Computers (CPC2006), John Wiley and Sons Ltd. Chichester, UK,
vol. 19 Issue 18, Dec. 2007, pp. 2391-2406.

Lu et al. “LC-GRFA: global register file assignment with local con-
sciousness for VLIW DSP processors with non-uniform register
files,” Concurrency and Computation: Practice & Experience—
Compilers for Parallel Computers 2007 Workshop (CPC 2007), John
Wiley and Sons Ltd. Chichester, UK, vol. 21 Issue 1, Jan. 2009, pp.
101-114.

Gebhart et al., “A Compile-Time Managed Multi-Level Register File
Hierarchy,” MICRO-44 *11, Proceedings of the 44th Annual IEEE/
ACM International Symposium on Microarchitecture, 201 1, pp. 465-
476.

* cited by examiner

U.S. Patent Jan. 5,2016 Sheet 1 of 14 US 9,229,717 B2

COMPUTER
SYSTEM MEMORY SYSTEM
104 ,/ 100
DEVICE DRIVER |COMPILER
103 101 COMMUNICATION
PATH
i 113
!
PARALLEL
CPU “g%'\,"é)GRg PROCESSING
102 | - 105 — ™1 SUBSYSTEM
— — 12
i
DISPLAY
COMMUNICATION ! DEVICE
PATH 110
106 ™\

' INPUT DEVICES

o | ‘—/108%

BRIDGE

SYSTEM
DISK

114 107 <
A
Y
ADD - IN CARD SWITCH ADD - IN CARD
120 [C | M8 [T | 121
A
Y
NETWORK
ADAPTER

118

FIG. 1

U.S. Patent Jan. 5,2016 Sheet 2 of 14 US 9,229,717 B2

_ Parallel Processing
Memory Bridge | Communication Subsystem
105 Path 12
1 1% "3
I — PPU 202(0)
< |]
I/0 Unit
205 = Host Interface 206

1 Front End 212
Task/Work Unit 207

A
Y

Processing Cluster Array 230

GPC GPC GPC
208(0) 208(1) | """ | 208(C-1)

A
Y

- Crossbar Unit 210

A A A
v Memoryyinterface 214 y

Partition Partition Partition
Unit Unit (=" Unit
215(0) 215(1) 215(D-1
Y Y Y
DRAM DRAM DRAM

220(0) 220(1) |"""|220(D-1)
PP Memory 204(0)

PPU PP Memory
o 202(1) | 204(1)
_ PPU | PP Memory
S 202(U-1) | | 204(U-1)

FIG. 2

U.S. Patent Jan. 5,2016 Sheet 3 of 14 US 9,229,717 B2
FROM PIPELINE MANAGER 305
IN GPC 208
SM 310
INSTRUCTION L1 CACHE 370 -
'
WARP SCHEDULER AND INSTRUCTION UNIT 312
Y
LOCAL REGISTER FILE 304
} } i i)
1 ‘ v
EXEC EXEC EXEC
UNIT UNIT ces UNIT
302(0) 302(1) 302(N-1
UNIFIED
— — — ADDRESS
MAPPING
Lsu | | Lsu LSU UNIT
303(0 303(1) [~ *** ~303(P-1 352
I] I
! ‘ '
(MEMORY AND CACHE INTERCONNECT @)
I] I
1 ‘ Y
SHARED MEMORY 306
L1 CACHE 320
TO/FROM MMU
MEMORY INTERFACE 214 ———{ 5.q
VIA CROSSBAR UNIT 210 = FROM
L1.5 CACHE
IN
FIG. 3 GPC 208

U.S. Patent Jan. 5,2016 Sheet 4 of 14 US 9,229,717 B2

,/.400
CLUSTER CLUSTER CLUSTER
405(0) 405(1) 405(X)
LRF | LRF | LRF |
404(0) 404(1 404(X)
I] l 1
! \ r y
EXEC | EXEC EXEC EXEC
UNIT | UNIT UNIT cee UNIT
402(0) |402(1) 402(2) 402(Y)
I] l
! \ r
Lsu |_| Lsu | _ LsU | _|
403(0) 403(1) 403(2)

| |
MASTER REGISTER FILE 406

FIG. 4

U.S. Patent Jan. 5,2016 Sheet 5 of 14 US 9,229,717 B2

500

S

CLUSTER ASSIGNMENT 505

A

INSTRUCTION SCHEDULING | _~5qg

A

VIRTUAL REGISTER

~"" 515
PARTITIONING
LOCAL REGISTER FILE A
ALLOCATION >20
MASTER REGISTER FILE
525

ALLOCATION

U.S. Patent

NON-OWNER CLUSTER READ TRANSFORMS

Jan. 5, 2016 Sheet 6 of 14 US 9,229,717 B2
// 600
FROM
STEP 510
STEP 515
Y
602
ASSIGN OWNER CLUSTERS
Y
604
OWNER CLUSTER WRITE TRANSFORMS
Y
606

Y

NON-OWNER CLUSTER WRITE TRANSFORMS

608

Y

TO
STEP 520

FIG. 6

U.S. Patent Jan. 5,2016 Sheet 7 of 14 US 9,229,717 B2

700

L

FROM
STEP 510

STEP 602

Y

OBTAIN NEXT VIRTUAL REGISTER LIVE
RANGE

702

Y

COUNT NUMBER OF ACCESSES IN EACH CLUSTER
FOR VIRTUAL REGISTER LIVE RANGE

704

Y

ASSIGN OWNER CLUSTER AS CLUSTER HAVING
HIGHEST NUMBER OF ACCESSES

i

ANY

VIRTUAL

YES REGISTER LIVE
RANGES LEFT?

706

708

NO

J

TO
STEP 604

FIG.7

U.S. Patent

Jan. 5§, 2016 Sheet 8 of 14

FROM
STEP 602

US 9,229,717 B2

800

L

STEP 604

-

Y

OBTAIN NEXT OWNER CLUSTER WRITE INCLUDING
VIRTUAL REGISTER (VR) AND ASSOCIATED LIVE RANGE

802

|

804

ANY
NON-OWNER

NO CLUSTER READS OF VR

IN LIVE RANGE?

AFTER OWNER CLUSTER WRITE, INSERT
INSTRUCTION TO COPY VALUE IN VR TO
GLOBAL VIRTUAL REGISTER (MVR)

806

|

ANY
OWNER CLUSTER

808
YES

WRITES LEFT?

TO
STEP 606

FIG. 8

U.S. Patent

906

2

Jan. 5, 2016 Sheet 9 of 14 US 9,229,717 B2
900
FROM
STEP 604 ’
STEP 606
‘ 902

OBTAIN NEXT NON-OWNER CLUSTER READ INCLUDING
VIRTUAL REGISTER (VR) AND ASSOCIATED LIVE RANGE

904

MULTIPLE
NON-OWNER CLUSTER
READS OF VR IN
LIVE RANGE?

ALTER READ
INSTRUCTION
TO READ FROM
CORRESPONDING
GLOBAL VIRTUAL 908
REGISTER (MVR) FIRST
NO NON-OWNER
! CLUSTER
ALTERREAD (— 912 READ?
INSTRUCTION
TO READ FROM (910
NEW VIRTUAL
REGISTER (VRn) INSERT INSTRUCTION, BEFORE
THE READ INSTRUCTION,
R TO COPY VALUE FROM
CORRESPONDING GLOBAL
VIRTUAL REGISTER (MVR)
‘ 914 | INTONEW VIRTUAL REGISTER
ANY (VRn) AND ALTER READ
YES INSTRUCTION TO READ FROM

READS LEFT?

NON-OWNER CLUSTER

NEW VIRTUAL REGISTER (VRn)

FIG. 9

¢

TO
STEP 608

U.S. Patent

Jan. 5, 2016 Sheet 10 of 14 US 9,229,717 B2
FROM 1000
STEP 606 /—
STEP 608
‘ 1002

OBTAIN NEXT NON-OWNER CLUSTER WRITE
INCLUDING VIRTUAL REGISTER (VR) AND
ASSOCIATED LIVE RANGE

—1004

ASSIGNED TO

ALTER WRITE INSTRUCTION TO WRITE TO
NEW VIRTUAL REGISTER (VRn)

SAME NON-OWNER
CLUSTER THAT READ
FROM SAME VIRTUAL

, —1006

REGISTER (VR) IN
SAME LIVE
RANGE?

INSERT FIRST COPY INSTRUCTION, AFTER THE
WRITE INSTRUCTION, TO COPY VALUE FROM
NEW VIRTUAL REGISTER (VRn) TO
CORRESPONDING GLOBAL VIRTUAL
REGISTER (MVR)

NO
1005

ALTER WRITE INSTRUCTION TO
WRITE TO CORRESPONDING
GLOBAL VIRTUAL REGISTER (MVR)

, 1008

\ 1007

INSERT SECOND COPY INSTRUCTION,
AFTER THE FIRST COPY INSTRUCTION, TO
COPY VALUE FROM MVR TO OWNER
CLUSTER VIRTUAL REGISTER (VR)

INSERT COPY INSTRUCTION,
AFTER WRITE INSTRUCTION,
TO COPY VALUE FROM MVR
TO OWNER CLUSTER
VIRTUAL REGISTER (VR)

1010

ANY
NON-OWNER
CLUSTER WRITES
LEFT?

YES

TO
STEP 520

FIG. 10

US 9,229,717 B2

Sheet 11 of 14

Jan. 5, 2016

U.S. Patent

112

vOL1

£22LL~ ZZzh~ Ll "Old 1-Z2LL~
ZHA M~ :
\ N
0kl LeA 4
9z}
A Ef
. 9z}
om_>_>_ N_// : LHA d
celd OMAW ‘L8A AOW— : /oN:
Z4A OMAN AOW—
A M—
8211
LA M— :
\ N
OLbL LA N
901
RA E{
9011
LHA o
\ N
A0 LA N
. 9011
LA >>.//
{ Jeo R 8041 (10
€-204) Z-2011 1-204)

00tL

US 9,229,717 B2

Sheet 12 of 14

Jan. 5, 2016

U.S. Patent

¢l Old
A4 [ATAVIAS 1-¢0¢l
w o 174" w ¢v0cl w L-v0CL
LINN TYNOILONNS 1INN T¥NOILONNA LINN TYNOILONNS
| i |
1-91¢1 ™ [XA RN
s e e e oo Nm> o Pm>ll|
) T]
€0 ﬁ 20 ﬂ Z-802) &Y ﬁ 1-80Z)
€-90¢1 2-90¢cl 1-90¢C1
7
8lClL ™ N-m_.N_\\ €9lcl
Y
** O¥AN
1174 [A%4°

00cl

US 9,229,717 B2

Sheet 13 of 14

Jan. 5, 2016

U.S. Patent

D

ceel

D

b-¥eel

D

chogl

B

I-¥0€1

€281~ 22280~ ¢l 9Old 1-22E1 ~
' OHAN -
- " /
e w@ Betl
' LHEA m_'//
O¥AIN ‘LA AONW— ’
OHAN >>/M veel
gscl .
' LHA m_.//
0dAN o ’
. N zee)
98¢l . OuAW g
L¥A O4AW AOW— gcel
LHA >>/ﬂ
086}
' LHA H—
. ™
VeA m/wﬁ 801
A E
pig)
>>//
8lel .
A M
= zZiel
9LEl LA N
. 90¢}
LA >>.//
{ |eo { |z olel (19
€-Z0€l \\ Z-20€1 1-20€L
00S1

US 9,229,717 B2

Sheet 14 of 14

Jan. 5, 2016

U.S. Patent

vl "Old
€-¢ovl ¢covl L-covlL
w 5 40) 4" w c¥ovl m L-v0¥L
LINN TVYNOILONNS LINN TVYNOILONNS LINN T¥YNOILONNS
| i |
N-m_.i\/\:
LI) LI '} Fm> [} |-t —
i
€0 V 20 V o 10 V
(ans (
€-90vL ¢90vL 1-90¥1
\
8lvl ™ To_‘i.\ 1424"
|
*° OdAN
oLyl civl

00vi

US 9,229,717 B2

1

REGISTER ALLOCATION FOR CLUSTERED
MULTI-LEVEL REGISTER FILES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to parallel comput-
ing and, more specifically, to register allocation for clustered
multi-level register files.

2. Description of the Related Art

Computer processors oftentimes utilize register files as a
scratch space for performing computations. Register files are
typically configured for speed and are typically physically
close to clusters of functional units that perform calculations.
Some parallel processing systems having multiple clusters of
functional units utilize a multiple level hierarchy of register
files.

A multiple level hierarchy provides some register files at
the bottom of the hierarchy (“low-level register files”) that are
physically close to the functional units and other register files
at the top of the hierarchy (“high-level register files™) that are
physically farther from the functional units. Values in low-
level register files require less time and energy to access than
values in high-level register files. For simplicity of design and
for speed, low-level register files may be accessible only to a
single cluster of functional units, while high-level register
files may be accessible to a larger number of clusters of
functional units.

While values may be stored in low-level register files to
reduce energy consumption and for speed, values stored in
low-level register files may be needed by multiple clusters
that do not necessarily have direct access to the low-level
register files in which the values are stored. Therefore, tech-
niques are generally used to ensure that values that are needed
by multiple clusters of functional units are actually available
to all of those multiple clusters of functional units.

Some current techniques for making values available to
more than one cluster of functional units ensure that all values
that are utilized by multiple clusters of functional units are
stored in high-level register files to allow more than one
cluster of functional units to access the values. While storing
values utilized by multiple functional units in a high-level
register file helps to ensure that values needed by multiple
clusters of functional units are accessible to those multiple
clusters of functional units, accessing high-level register files
requires more time and energy than accessing low-level reg-
ister files. Further, some values that are used by multiple
clusters of functional units are used primarily by a single
cluster of functional units, with some ancillary accesses made
by other clusters of functional units.

Therefore, one drawback of techniques in which all values
utilized by multiple clusters of functional units are stored in
high-level register files is that, although values utilized pri-
marily by a single cluster of functional units may have only a
few ancillary accesses by other functional units, the values
used primarily by the single functional unit are stored in
high-level register files. As high-level register files have
higher access energy and higher access time than low-level
register files, employing techniques in which all values uti-
lized by multiple clusters of functional units are stored in
high-level register files may miss opportunities for optimiza-
tion in terms of reduction of access time and access energy.

As the foregoing illustrates, what is needed in the art is a
technique for improving the utilization of a multiple level
register file hierarchy by multiple clusters of functional units.

SUMMARY OF THE INVENTION

One embodiment of the present invention sets forth a
method for allocating registers within a processing unit. A

10

15

20

35

40

45

55

60

65

2

compiler assigns a plurality of instructions to a plurality of
processing clusters. Each instruction is configured to access a
first virtual register within a live range. The compiler deter-
mines which processing cluster in the plurality of processing
clusters is an owner cluster for the first virtual register within
the live range. The compiler configures a first instruction
included in the plurality of instructions to access a first global
virtual register.

One advantage of the disclosed technique is that the dis-
closed technique can configure instructions that access reg-
isters in a multiple-level register file hierarchy such that reg-
isters that are accessed often can be allocated to physical
registers in a local register file.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and are therefore not to
be considered limiting of its scope, for the invention may
admit to other equally effective embodiments.

FIG. 1 is a block diagram illustrating a computer system
configured to implement one or more aspects of the present
invention;

FIG. 2 is a block diagram of a parallel processing sub-
system for the computer system of FIG. 1, according to one
embodiment of the present invention;

FIG. 3 is a block diagram of a portion of a streaming
multiprocessor within the general processing cluster of FIG.
2, according to one embodiment of the present invention;

FIG. 4 is a block diagram of a multi-level register file
hierarchy according to one embodiment of the present inven-
tion;

FIG. 5 sets forth a flow diagram of method steps for allo-
cating virtual registers referenced by instructions in a virtual
instruction set to physical registers, according to one embodi-
ment of the present invention;

FIG. 6 sets forth a flow diagram of method steps for per-
forming virtual register partitioning, according to one
embodiment of the present invention;

FIG. 7 sets forth a flow diagram of method steps for assign-
ing owner clusters, according to one embodiment of the
present invention;

FIG. 8 sets forth a flow diagram of method steps for trans-
forming owner cluster write operations, according to one
embodiment of the present invention;

FIG. 9 sets forth a flow diagram of method steps for trans-
forming non-owner cluster read operations, according to one
embodiment of the present invention;

FIG. 10 sets forth a flow diagram of method steps for
transforming non-owner cluster write operations, according
to one embodiment of the present invention;

FIG. 11 is a block diagram depicting example code seg-
ments both before and after virtual register partitioning,
according to one embodiment of the present invention;

FIG. 12 is a block diagram of a multi-level register file
hierarchy, according to one embodiment of the present inven-
tion;

FIG. 13 is a block diagram depicting example code seg-
ments both before and after virtual register partitioning,
according to one embodiment of the present invention; and

US 9,229,717 B2

3

FIG. 14 is a block diagram of a multi-level register file
hierarchy, according to one embodiment of the present inven-
tion.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a more thorough understanding of the
present invention. However, it will be apparent to one of skill
in the art that the present invention may be practiced without
one or more of these specific details.

System Overview

FIG. 1 is a block diagram illustrating a computer system
100 configured to implement one or more aspects of the
present invention. Computer system 100 includes a central
processing unit (CPU) 102 and a system memory 104 com-
municating via an interconnection path that may include a
memory bridge 105. Memory bridge 105, which may be, e.g.,
a Northbridge chip, is connected via a bus or other commu-
nication path 106 (e.g., a HyperTransport link) to an I/O
(input/output) bridge 107. /O bridge 107, which may be, e.g.,
a Southbridge chip, receives user input from one or more user
input devices 108 (e.g., keyboard, mouse) and forwards the
input to CPU 102 via communication path 106 and memory
bridge 105. A parallel processing subsystem 112 is coupled to
memory bridge 105 via a bus or second communication path
113 (e.g., a Peripheral Component Interconnect (PCI)
Express, Accelerated Graphics Port, or HyperTransport link).
In one embodiment parallel processing subsystem 112 is a
graphics subsystem that delivers pixels to a display device
110 that may be any conventional cathode ray tube, liquid
crystal display, light-emitting diode display, or the like. A
system disk 114 is also connected to /O bridge 107 and may
be configured to store content and applications and data for
use by CPU 102 and parallel processing subsystem 112.
System disk 114 provides non-volatile storage for applica-
tions and data and may include fixed or removable hard disk
drives, flash memory devices, and CD-ROM (compact disc
read-only-memory), DVD-ROM (digital versatile disc-
ROM), Blu-ray, HD-DVD (high definition DVD), or other
magnetic, optical, or solid state storage devices.

A switch 116 provides connections between /O bridge 107
and other components such as a network adapter 118 and
various add-in cards 120 and 121. Other components (not
explicitly shown), including universal serial bus (USB) or
other port connections, compact disc (CD) drives, digital
versatile disc (DVD) drives, film recording devices, and the
like, may also be connected to /O bridge 107. The various
communication paths shown in FIG. 1, including the specifi-
cally named communication paths 106 and 113 may be
implemented using any suitable protocols, such as PCI
Express, AGP (Accelerated Graphics Port), HyperTransport,
orany other bus or point-to-point communication protocol(s),
and connections between different devices may use different
protocols as is known in the art.

In one embodiment, the parallel processing subsystem 112
incorporates circuitry optimized for graphics and video pro-
cessing, including, for example, video output circuitry, and
constitutes a graphics processing unit (GPU). In another
embodiment, the parallel processing subsystem 112 incorpo-
rates circuitry optimized for general purpose processing,
while preserving the underlying computational architecture,
described in greater detail herein. In yet another embodiment,
the parallel processing subsystem 112 may be integrated with
one or more other system elements in a single subsystem,

10

15

20

25

30

35

40

45

50

55

60

65

4

such as joining the memory bridge 105, CPU 102, and 1/0
bridge 107 to form a system on chip (SoC).

A compiler 101 may be embedded within device driver
103. Compiler 101 compiles program instructions as needed
for execution by parallel processing subsystem 112. During
such compilation, compiler 101 may apply transforms to
program instructions at various phases of compilation. In
another embodiment of the present invention, compiler 101
may be a stand-alone application.

It will be appreciated that the system shown herein is
illustrative and that variations and modifications are possible.
The connection topology, including the number and arrange-
ment of bridges, the number of CPUs 102, and the number of
parallel processing subsystems 112, may be modified as
desired. For instance, in some embodiments, system memory
104 is connected to CPU 102 directly rather than through a
bridge, and other devices communicate with system memory
104 via memory bridge 105 and CPU 102. In other alternative
topologies, parallel processing subsystem 112 is connected to
1/O bridge 107 or directly to CPU 102, rather than to memory
bridge 105. In still other embodiments, 1/O bridge 107 and
memory bridge 105 might be integrated into a single chip
instead of existing as one or more discrete devices. Large
embodiments may include two or more CPUs 102 and two or
more parallel processing subsystems 112. The particular
components shown herein are optional; for instance, any
number of add-in cards or peripheral devices might be sup-
ported. In some embodiments, switch 116 is eliminated, and
network adapter 118 and add-in cards 120, 121 connect
directly to I/O bridge 107.

FIG. 2 illustrates a parallel processing subsystem 112,
according to one embodiment of the present invention. As
shown, parallel processing subsystem 112 includes one or
more parallel processing units (PPUs) 202, each of which is
coupled to a local parallel processing (PP) memory 204. In
general, a parallel processing subsystem includes a number U
of PPUs, where Uz1. (Herein, multiple instances of like
objects are denoted with reference numbers identifying the
object and parenthetical numbers identifying the instance
where needed.) PPUs 202 and parallel processing memories
204 may be implemented using one or more integrated circuit
devices, such as programmable processors, application spe-
cific integrated circuits (ASICs), or memory devices, or in
any other technically feasible fashion.

Referring again to FIG. 1 as well as FIG. 2, in some
embodiments, some or all of PPUs 202 in parallel processing
subsystem 112 are graphics processors with rendering pipe-
lines that can be configured to perform various operations
related to generating pixel data from graphics data supplied
by CPU 102 and/or system memory 104 via memory bridge
105 and the second communication path 113, interacting with
local parallel processing memory 204 (which can be used as
graphics memory including, e.g., a conventional frame
buffer) to store and update pixel data, delivering pixel data to
display device 110, and the like. In some embodiments, par-
allel processing subsystem 112 may include one or more
PPUs 202 that operate as graphics processors and one or more
other PPUs 202 that are used for general-purpose computa-
tions. The PPUs 202 may be identical or different, and each
PPU 202 may have one or more dedicated parallel processing
memory device(s) or no dedicated parallel processing
memory device(s). One or more PPUs 202 in parallel pro-
cessing subsystem 112 may output data to display device 110
or each PPU 202 in parallel processing subsystem 112 may
output data to one or more display devices 110.

In operation, CPU 102 is the master processor of computer
system 100, controlling and coordinating operations of other

US 9,229,717 B2

5

system components. In particular, CPU 102 issues commands
that control the operation of PPUs 202. In some embodi-
ments, CPU 102 writes a stream of commands for each PPU
202 to a data structure (not explicitly shown in either FIG. 1
or FIG. 2) that may be located in system memory 104, parallel
processing memory 204, or another storage location acces-
sible to both CPU 102 and PPU 202. A pointer to each data
structure is written to a pushbuffer to initiate processing of the
stream of commands in the data structure. The PPU 202 reads
command streams from one or more pushbuffers and then
executes commands asynchronously relative to the operation
of CPU 102. Execution priorities may be specified for each
pushbuffer by an application program via the device driver
103 to control scheduling of the different pushbuffers.

Referring back now to FIG. 2 as well as FIG. 1, each PPU
202 includes an I/O (input/output) unit 205 that communi-
cates with the rest of computer system 100 via communica-
tion path 113, which connects to memory bridge 105 (or, in
one alternative embodiment, directly to CPU 102). The con-
nection of PPU 202 to the rest of computer system 100 may
also be varied. In some embodiments, parallel processing
subsystem 112 is implemented as an add-in card that can be
inserted into an expansion slot of computer system 100. In
other embodiments, a PPU 202 can be integrated on a single
chip with a bus bridge, such as memory bridge 105 or /O
bridge 107. In still other embodiments, some or all elements
of PPU 202 may be integrated on a single chip with CPU 102.

In one embodiment, communication path 113 is a PCI
Express link, in which dedicated lanes are allocated to each
PPU 202, as is known in the art. Other communication paths
may also be used. An I/O unit 205 generates packets (or other
signals) for transmission on communication path 113 and
also receives all incoming packets (or other signals) from
communication path 113, directing the incoming packets to
appropriate components of PPU 202. For example, com-
mands related to processing tasks may be directed to a host
interface 206, while commands related to memory operations
(e.g., reading from or writing to parallel processing memory
204) may be directed to a memory crossbar unit 210. Host
interface 206 reads each pushbuffer and outputs the command
stream stored in the pushbuffer to a front end 212.

Each PPU 202 advantageously implements a highly paral-
lel processing architecture. As shown in detail, PPU 202(0)
includes a processing cluster array 230 that includes a number
C of general processing clusters (GPCs) 208, where C=z1.
Each GPC 208 is capable of executing a large number (e.g.,
hundreds or thousands) of threads concurrently, where each
thread is an instance of a program. In various applications,
different GPCs 208 may be allocated for processing different
types of programs or for performing different types of com-
putations. The allocation of GPCs 208 may vary dependent on
the workload arising for each type of program or computa-
tion.

GPCs 208 receive processing tasks to be executed from a
work distribution unit within a task/work unit 207. The work
distribution unit receives pointers to processing tasks that are
encoded as task metadata (TMD) (not shown) and stored in
memory. The pointers to TMDs are included in the command
stream that is stored as a pushbuffer and received by the front
end unit 212 from the host interface 206. Processing tasks that
may be encoded as TMDs include indices of data to be pro-
cessed, as well as state parameters and commands defining
how the data is to be processed (e.g., what program is to be
executed). The task/work unit 207 receives tasks from the
front end 212 and ensures that GPCs 208 are configured to a
valid state before the processing specified by each one of the
TMDs is initiated. A priority may be specified for each TMD

10

15

20

25

30

35

40

45

50

55

60

65

6

that is used to schedule execution of the processing task.
Processing tasks can also be received from the processing
cluster array 230. Optionally, the TMD can include a param-
eter that controls whether the TMD is added to the head or the
tail for a list of processing tasks (or list of pointers to the
processing tasks), thereby providing another level of control
over priority.

Memory interface 214 includes a number D of partition
units 215 that are each directly coupled to a portion of parallel
processing memory 204, where D=z1. As shown, the number
of'partition units 215 generally equals the number of dynamic
random access memory (DRAM) 220. In other embodiments,
the number of partition units 215 may not equal the number of
memory devices. Persons of ordinary skill in the art will
appreciate that DRAM 220 may be replaced with other suit-
able storage devices and can be of generally conventional
design. A detailed description is therefore omitted. Render
targets, such as frame buffers or texture maps may be stored
across DRAMs 220, allowing partition units 215 to write
portions of each render target in parallel to efficiently use the
available bandwidth of parallel processing memory 204.

Any one of GPCs 208 may process data to be written to any
of the DRAMs 220 within parallel processing memory 204.
Crossbar unit 210 is configured to route the output of each
GPC 208 to the input of any partition unit 215 or to another
GPC 208 for further processing. GPCs 208 communicate
with memory interface 214 through crossbar unit 210 to read
from or write to various external memory devices. In one
embodiment, crossbar unit 210 has a connection to memory
interface 214 to communicate with I/O unit 205, as well as a
connection to local parallel processing memory 204, thereby
enabling the processing cores within the different GPCs 208
to communicate with system memory 104 or other memory
thatis notlocal to PPU 202. In the embodiment shown in FIG.
2, crossbar unit 210 is directly connected with I/O unit 205.
Crossbar unit 210 may use virtual channels to separate traffic
streams between the GPCs 208 and partition units 215.

Again, GPCs 208 can be programmed to execute process-
ing tasks relating to a wide variety of applications, including
but not limited to, linear and nonlinear data transforms, fil-
tering of video and/or audio data, modeling operations (e.g.,
applying laws of physics to determine position, velocity and
other attributes of objects), image rendering operations (e.g.,
tessellation shader, vertex shader, geometry shader, and/or
pixel shader programs), and so on. PPUs 202 may transfer
data from system memory 104 and/or local parallel process-
ing memories 204 into internal (on-chip) memory, process the
data, and write result data back to system memory 104 and/or
local parallel processing memories 204, where such data can
be accessed by other system components, including CPU 102
or another parallel processing subsystem 112.

A PPU 202 may be provided with any amount of local
parallel processing memory 204, including no local memory,
and may use local memory and system memory in any com-
bination. For instance, a PPU 202 can be a graphics processor
in a unified memory architecture (UMA) embodiment. In
such embodiments, little or no dedicated graphics (parallel
processing) memory would be provided, and PPU 202 would
use system memory exclusively or almost exclusively. In
UMA embodiments, a PPU 202 may be integrated into a
bridge chip or processor chip or provided as a discrete chip
with a high-speed link (e.g., PCI Express) connecting the
PPU 202 to system memory via a bridge chip or other com-
munication means.

As noted above, any number of PPUs 202 can be included
in a parallel processing subsystem 112. For instance, multiple
PPUs 202 can be provided on a single add-in card, or multiple

US 9,229,717 B2

7

add-in cards can be connected to communication path 113, or
one or more of PPUs 202 can be integrated into a bridge chip.
PPUs 202 in a multi-PPU system may be identical to or
different from one another. For instance, different PPUs 202
might have different numbers of processing cores, different
amounts of local parallel processing memory, and so on.
Where multiple PPUs 202 are present, those PPUs may be
operated in parallel to process data at a higher throughput than
is possible with a single PPU 202. Systems incorporating one
or more PPUs 202 may be implemented in a variety of con-
figurations and form factors, including desktop, laptop, or
handheld personal computers, servers, workstations, game
consoles, embedded systems, and the like.

Multiple processing tasks may be executed concurrently
on the GPCs 208 and a processing task may generate one or
more “child” processing tasks during execution. The task/
work unit 207 receives the tasks and dynamically schedules
the processing tasks and child processing tasks for execution
by the GPCs 208.

FIG. 3 is a block diagram of a streaming multiprocessor
(SM) 310 within a GPC 208 of FIG. 2, according to one
embodiment of the present invention. Each GPC 208 may be
configured to execute a large number of threads in parallel,
where the term “thread” refers to an instance of a particular
program executing on a particular set of input data. In some
embodiments, single-instruction, multiple-data (SIMD)
instruction issue techniques are used to support parallel
execution of a large number of threads without providing
multiple independent instruction units. In other embodi-
ments, single-instruction, multiple-thread (SIMT) techniques
are used to support parallel execution of a large number of
generally synchronized threads, using a common instruction
unit configured to issue instructions to a set of processing
engines within each one of the GPCs 208. Unlike a SIMD
execution regime, where all processing engines typically
execute identical instructions, SIMT execution allows differ-
ent threads to more readily follow divergent execution paths
through a given thread program. Persons of ordinary skill in
the art will understand that a SIMD processing regime repre-
sents a functional subset of a SIMT processing regime.

Operation of GPC 208 is advantageously controlled via a
pipeline manager (not shown) that distributes processing
tasks to one or more streaming multiprocessors (SMs) 310,
where each SM 310 configured to process one or more thread
groups. Each SM 310 includes an instruction .1 cache 370
that is configured to receive instructions and constants from
memory via an [L1.5 cache (not shown) within the GPC 208.
A warp scheduler and instruction unit 312 receives instruc-
tions and constants from the instruction L1 cache 370 and
controls local register file 304 and SM 310 functional units
according to the instructions and constants. The SM 310
functional units include N exec (execution or processing)
units 302 and P load-store units (LSU) 303. The SM func-
tional units may be pipelined, allowing a new instruction to be
issued before a previous instruction has finished, as is known
in the art. Any combination of functional execution units may
be provided. In one embodiment, the functional units support
a variety of operations including integer and floating point
arithmetic (e.g., addition and multiplication), comparison
operations, Boolean operations (AND, OR, XOR), bit-shift-
ing, and computation of various algebraic functions (e.g.,
planar interpolation, trigonometric, exponential, and loga-
rithmic functions, etc.); and the same functional unit hard-
ware can be leveraged to perform different operations.

The series of instructions transmitted to a particular GPC
208 constitutes a thread, as previously defined herein, and the
collection of a certain number of concurrently executing

10

15

20

25

30

35

40

45

50

55

60

65

8

threads across the parallel processing engines (not shown)
within an SM 310 is referred to herein as a “warp” or “thread
group.” As used herein, a “thread group” refers to a group of
threads concurrently executing the same program on different
input data, with one thread of the group being assigned to a
different processing engine within an SM 310. A thread group
may include fewer threads than the number of processing
engines within the SM 310, in which case some processing
engines will be idle during cycles when that thread group is
being processed. A thread group may also include more
threads than the number of processing engines within the SM
310, in which case processing will take place over consecu-
tive clock cycles. Since each SM 310 can support up to G
thread groups concurrently, it follows that a system that, in a
GPC 208 that includes M streaming multiprocessors 310, up
to G*M thread groups can be executing in GPC 208 at any
given time.

Additionally, a plurality of related thread groups may be
active (in different phases of execution) at the same time
within an SM 310. This collection of thread groups is referred
to herein as a “cooperative thread array” (“CTA”) or “thread
array.” The size of a particular CTA is equal to m*k, where k
is the number of concurrently executing threads in a thread
group and is typically an integer multiple of the number of
parallel processing engines within the SM 310, and m is the
number of thread groups simultaneously active within the SM
310. The size of a CTA is generally determined by the pro-
grammer and the amount of hardware resources, such as
memory or registers, available to the CTA.

In embodiments of the present invention, it is desirable to
use PPU 202 or other processor(s) of a computing system to
execute general-purpose computations using thread arrays.
Each thread in the thread array is assigned a unique thread
identifier (“thread ID”) that is accessible to the thread during
the thread’s execution. The thread ID, which can be defined as
a one-dimensional or multi-dimensional numerical value
controls various aspects of the thread’s processing behavior.
For instance, a thread ID may be used to determine which
portion of the input data set a thread is to process and/or to
determine which portion of an output data set a thread is to
produce or write.

A sequence of per-thread instructions may include at least
one instruction that defines a cooperative behavior between
the representative thread and one or more other threads of the
thread array. For example, the sequence of per-thread instruc-
tions might include an instruction to suspend execution of
operations for the representative thread at a particular point in
the sequence until such time as one or more of the other
threads reach that particular point, an instruction for the rep-
resentative thread to store data in a shared memory to which
one or more of the other threads have access, an instruction
for the representative thread to atomically read and update
data stored in a shared memory to which one or more of the
other threads have access based on their thread IDs, or the
like. The CTA program can also include an instruction to
compute an address in the shared memory from which data is
to be read, with the address being a function of thread ID. By
defining suitable functions and providing synchronization
techniques, data can be written to a given location in shared
memory by one thread of a CTA and read from that location
by a different thread of the same CTA in a predictable manner.
Consequently, any desired pattern of data sharing among
threads can be supported, and any thread in a CTA can share
data with any other thread in the same CTA. The extent, if any,
of data sharing among threads of a CTA is determined by the
CTA program; thus, it is to be understood that in a particular
application that uses CTAs, the threads of a CTA might or

US 9,229,717 B2

9

might not actually share data with each other, depending on
the CTA program, and the terms “CTA” and “thread array”
are used synonymously herein.

SM 310 provides on-chip (internal) data storage with dif-
ferent levels of accessibility. Special registers (not shown) are
readable but not writeable by LSU 303 and are used to store
parameters defining each thread’s “position.” In one embodi-
ment, special registers include one register per thread (or per
exec unit 302 within SM 310) that stores a thread ID; each
thread ID register is accessible only by a respective one of the
exec unit 302. Special registers may also include additional
registers, readable by all threads that execute the same pro-
cessing task represented by a TMD (or by all LSUs 303) that
store a CTA identifier, the CTA dimensions, the dimensions
of a grid to which the CTA belongs (or queue position if the
TMD encodes a queue task instead of a grid task), and an
identifier of the TMD to which the CTA is assigned.

Ifthe TMD is a grid TMD, execution of the TMD causes a
fixed number of CTAs to be launched and executed to process
the fixed amount of data stored in the queue. The number of
CTAs is specified as the product of the grid width, height, and
depth. The fixed amount of data may be stored in the TMD or
the TMD may store a pointer to the data that will be processed
by the CTAs. The TMD also stores a starting address of the
program that is executed by the CTAs.

If the TMD is a queue TMD, then a queue feature of the
TMD is used, meaning that the amount of data to be processed
is not necessarily fixed. Queue entries store data for process-
ing by the CTAs assigned to the TMD. The queue entries may
also represent a child task that is generated by another TMD
during execution of a thread, thereby providing nested paral-
lelism. Typically, execution of the thread, or CTA that
includes the thread, is suspended until execution of the child
task completes. The queue may be stored in the TMD or
separately from the TMD, in which case the TMD stores a
queue pointer to the queue. Advantageously, data generated
by the child task may be written to the queue while the TMD
representing the child task is executing. The queue may be
implemented as a circular queue so that the total amount of
data is not limited to the size of the queue.

CTAs that belong to a grid have implicit grid width, height,
and depth parameters indicating the position of the respective
CTA within the grid. Special registers are written during
initialization in response to commands received via front end
212 from device driver 103 and do not change during execu-
tion of a processing task. The front end 212 schedules each
processing task for execution. Each CTA is associated with a
specific TMD for concurrent execution of one or more tasks.
Additionally, a single GPC 208 may execute multiple tasks
concurrently.

A parameter memory (not shown) stores runtime param-
eters (constants) that can be read but not written by any thread
within the same CTA (or any LSU 303). In one embodiment,
device driver 103 provides parameters to the parameter
memory before directing SM 310 to begin execution of a task
that uses these parameters. Any thread within any CTA (or
any exec unit 302 within SM 310) can access global memory
through a memory interface 214. Portions of global memory
may be stored in the [.1 cache 320.

Local register file 304 is used by each thread as scratch
space; each register is allocated for the exclusive use of one
thread, and data in any of local register file 304 is accessible
only to the thread to which the register is allocated. Local
register file 304 can be implemented as a register file that is
physically or logically divided into P lanes, each having some
number of entries (where each entry might store, e.g., a 32-bit
word). One lane is assigned to each of the N exec units 302

10

15

20

25

30

35

40

45

50

55

60

65

10

and P load-store units LSU 303, and corresponding entries in
different lanes can be populated with data for different
threads executing the same program to facilitate SIMD
execution. Different portions of the lanes can be allocated to
different ones of the G concurrent thread groups, so that a
given entry in the local register file 304 is accessible only to a
particular thread. In one embodiment, certain entries within
the local register file 304 are reserved for storing thread
identifiers, implementing one of the special registers. Addi-
tionally, a uniform [.1 cache 320 stores uniform or constant
values for each lane of the N exec units 302 and P load-store
units LSU 303.

Shared memory 306 is accessible to threads within a single
CTA; in other words, any location in shared memory 306 is
accessible to any thread within the same CTA (or to any
processing engine within SM 310). Shared memory 306 can
be implemented as a shared register file or shared on-chip
cache memory with an interconnect that allows any process-
ing engine to read from or write to any location in the shared
memory. In other embodiments, shared state space might map
onto a per-CTA region of off-chip memory, and be cached in
L1 cache 320. The parameter memory can be implemented as
a designated section within the same shared register file or
shared cache memory that implements shared memory 306,
or as a separate shared register file or on-chip cache memory
to which the LSUs 303 have read-only access. In one embodi-
ment, the area that implements the parameter memory is also
used to store the CTA ID and task ID, as well as CTA and grid
dimensions or queue position, implementing portions of the
special registers. Each LSU 303 in SM 310 is coupled to a
unified address mapping unit 352 that converts an address
provided for load and store instructions that are specified in a
unified memory space into an address in each distinct
memory space. Consequently, an instruction may be used to
access any of the local, shared, or global memory spaces by
specifying an address in the unified memory space.

The L1 cache 320 in each SM 310 can be used to cache
private per-thread local data and also per-application global
data. In some embodiments, the per-CTA shared data may be
cached in the L1 cache 320. The LSUs 303 are coupled to the
shared memory 306 and the L1 cache 320 via a memory and
cache interconnect 380.

It will be appreciated that the core architecture described
herein is illustrative and that variations and modifications are
possible. Any number of processing units, e.g., SMs 310, may
be included within a GPC 208. Further, as shown in FIG. 2, a
PPU 202 may include any number of GPCs 208 that are
advantageously functionally similar to one another so that
execution behavior does not depend on which GPC 208
receives a particular processing task. Further, each GPC 208
advantageously operates independently of other GPCs 208
using separate and distinct processing units, [.1 caches to
execute tasks for one or more application programs.

Persons of ordinary skill in the art will understand that the
architecture described in FIGS. 1-3 in no way limits the scope
of'the present invention and that the techniques taught herein
may be implemented on any properly configured processing
unit, including, without limitation, one or more CPUs, one or
more multi-core CPUs, one or more PPUs 202, one or more
GPCs 208, one or more graphics or special purpose process-
ing units, or the like, without departing the scope of the
present invention.

Global Register Allocation for Clustered Multi-Level
Register Files

FIG. 4 is a block diagram of a multi-level register file
hierarchy 400, according to one embodiment of the present

US 9,229,717 B2

11

invention. The multi-level register file hierarchy 400 is imple-
mented by clusters 405 and master register file 406. The
clusters 405 and master register file 406 may be included in
SM 310 and may replace all or part of local register file 304,
execution units 302, load-store units 403, and shared memory
306.

Each cluster 405 includes a dedicated local register file
404, one or more execution units 402, and may include a
load-store unit 403. Multi-level register file hierarchy 400
includes X dedicated local register files 404, Y exec (execu-
tion or processing) units 402 and Z load-store units (LSU)
403. The execution units 402 may be pipelined, allowing a
new instruction to be issued before a previous instruction has
finished, as is known in the art. Any combination of execution
units 402 may be provided. In one embodiment, the execution
units 402 support a variety of operations including integer and
floating point arithmetic (e.g., addition and multiplication),
comparison operations, Boolean operations (AND, OR,
XOR), bit-shifting, and computation of various algebraic
functions (e.g., planar interpolation, trigonometric, exponen-
tial, and logarithmic functions, etc.); and the same execution
unit 402 hardware can be leveraged to perform different
operations.

All execution units 402 in a cluster have direct access to
registers within the dedicated local register file 404 in the
cluster 405, and do not have direct access to registers within
dedicated local register files 404 in other clusters 405. Thus,
the multi-level register file hierarchy 400 shown in FIG. 4,
execution units 402(0) and 402(1) have direct access to reg-
isters in local register file 404(0) but do not have direct access
to registers in local register file 404(1).

Preferably, dedicated local register file 404 has features
that provide low access time and low access energy for reg-
isters in the dedicated local register file 404. One features that
provides low access time and low access energy is small
capacity. Additionally, dedicated local register file 404 may
be located physically close to execution units 402 and/or
load-store units 403 within the cluster, to reduce wire energy
required to access registers within dedicated local register file
404.

A master register file 406 is present and is not included in
any cluster 405. The master register file 406 includes registers
that are accessible to all execution units 402 in all clusters
405. Further, the master register file 406 has features that
provide greater capacity than the dedicated local register files
404.

Together, the master register file 406 and dedicated local
register files 404 implement a multi-level register file hierar-
chy 400 in which high-level register files correspond to the
master register file 406 and low-level register files correspond
to the dedicated local register files 404. Due to the low access
time, and low access energy of the dedicated local register
files 404, values which are used frequently are advanta-
geously stored in the dedicated local register files 404. Addi-
tional values that are used, though infrequently, may be stored
in the master register file 406. Values that are used even less
frequently may be stored in memory that is external to the
multi-level register file hierarchy 400 such as [.1 cache 320.

Values can be communicated between dedicated local reg-
ister files 404 in clusters 405 indirectly through master reg-
ister file 406. To communicate a value from a first dedicated
local register file 404 in a first cluster 405 to a second dedi-
cated local register file 404 in a second cluster, the value is
copied from a register in the first local register file 404 into a
register in the master register file 406, and then copied from
the register in the master register file 406 to a register in the
second local register file 404. As multiple instructions are

10

20

25

30

35

40

45

55

60

65

12

utilized to communicate values between dedicated local reg-
ister files 404 in clusters 405, it is beneficial to limit the
number of times values are communicated from one dedi-
cated register file 404 to another dedicated register file 404.

Execution units 402 are configured to execute instructions
in a machine code. The machine code comprises a set of
instructions for execution by execution units 402, where the
instructions may access, without limitation, physical registers
located in local register files 404 or master register file 406.
Compiler 101 (in FIG. 1) accepts instructions in a virtual
instruction set and translates the instructions in the virtual
instruction set into instructions in the machine code. The
virtual instruction set comprises a set of instructions that may
access virtual registers. Virtual registers do not necessarily
correspond to any particular physical register in local register
files 404 or master register file 406. Instead, during transla-
tion, compiler 101 performs a series of steps for allocating the
virtual registers to physical registers in local register files 404
or master register file 406.

FIG. 5 sets forth a flow diagram of method steps for allo-
cating virtual registers referenced by instructions in a virtual
instruction set to physical registers, according to one embodi-
ment of the present invention. Although the method steps are
described in conjunction with FIGS. 1-4, persons skilled in
the art will understand that any system configured to perform
the method steps, in any order, falls within the scope of the
present invention.

As shown, a method 500 begins in step 505, where com-
piler 101 performs cluster assignment. In cluster assignment,
compiler 101 assigns instructions in the virtual instruction set
to physical clusters 405. One example of an algorithm by
which compiler 101 can perform cluster assignment is an
algorithm known as the “Bottom-Up-Greedy” (BUG) algo-
rithm, as is known. In step 510, compiler 101 performs
instruction scheduling. In instruction scheduling, compiler
101 schedules the virtual instructions assigned in step 605, as
is known. An example of an algorithm for performing instruc-
tion scheduling is “list scheduling.”

In step 515, compiler 101 performs virtual register parti-
tioning. In virtual register partitioning, compiler 101 per-
forms a series of transforms that modify original instructions
in the virtual instruction set that access virtual registers. The
results of step 515 are modified instructions in the virtual
instruction set that may reference different virtual registers
than those referenced in the original instructions. Compiler
101 modifies the instructions that access virtual registers such
that virtual registers can be allocated to physical registers in
local register files 404 and in master register file 406. The
different virtual registers in the modified instructions com-
prise two different types of virtual registers—local virtual
registers, and global virtual registers. Local virtual registers
correspond to physical registers in local register files 404 in
clusters 405 and global virtual registers correspond to physi-
cal registers in master register file 406. Since local register
files 404 in one cluster 405 are not directly accessible to
another cluster 405, compiler 101 also inserts instructions for
copying values between local virtual registers that correspond
to different local register files 404 in different clusters 405.
Step 515 is described in more detail with respect to FIGS.
6-14, below.

In step 520, compiler 101 performs local register file allo-
cation. In local register file allocation, compiler 101 assigns
local virtual registers to physical registers in local register
files 404. To assign local virtual registers to physical registers
in local register files 404, compiler 101 may utilize an algo-
rithm known as “graph coloring” as is known. If there are

US 9,229,717 B2

13

insufficient physical registers in a local register file 404, com-
piler 101 can “spill” some virtual registers into the master
register file 406.

In step 525, compiler 101 performs master register file
allocation. In master register file allocation, compiler 101
assigns global virtual registers to physical registers in master
register file 406. To assign global virtual registers to physical
registers in master register file 406, compiler 101 may again
utilize the graph coloring algorithm, as is known.

The descriptions of FIGS. 6-10 below contain references to
a “‘new virtual register.” A “new virtual register” is intended as
a local virtual register in a non-owner cluster. If a virtual
register is owned by a cluster, the value from that virtual
register may be copied to the new virtual register so that the
non-owner cluster is able to access it locally. FIGS. 6-14 make
reference to the symbol “VRn”, which indicates a “new vir-
tual register.”

The descriptions of FIGS. 6-10 below contain references to
a “non-owner cluster.” A “non-owner cluster” is a cluster to
which an instruction that accesses (reads to or writes from) a
virtual register is assigned, but that is not the owner cluster of
the virtual register.

The descriptions of FIGS. 6-10 below contain references to
a “corresponding global virtual register”” “Corresponding
global virtual registers” are utilized to communicate values
between clusters. FIGS. 6-14 make reference to the symbol
“MVR”, which indicates a “corresponding global virtual reg-
ister.”

The descriptions of FIGS. 6-10 below also describe steps in
which compiler 101 “inserts” instructions “before” or “after”
instructions. The term “insert” describes a step in which com-
piler 101 modifies a consecutive set of instructions by adding
an additional instruction in a particular location. Thus, when
compiler 101 inserts a first instruction after a second instruc-
tion, compiler 101 creates the first instruction and places the
first instruction after the second instruction in the consecutive
set of instructions. Similarly, when compiler 101 inserts a first
instruction before a second instruction, compiler 101 creates
the first instruction and places the first instruction before the
second instruction in the consecutive set of instructions.

FIG. 6 sets forth a flow diagram of method steps for per-
forming virtual register partitioning, described in step 515 of
FIG. 5, according to one embodiment of the present inven-
tion. Although the method steps are described in conjunction
with FIGS. 1-4, persons skilled in the art will understand that
any system configured to perform the method steps, in any
order, falls within the scope of the present invention.

As shown, a method 600 begins in step 602, where com-
piler 101 assigns live ranges of virtual registers in the original
instructions to owner clusters. A live range, as is known,
comprises a range of accesses to a virtual register that begins
with a write of a value to the virtual register and ends with the
last read of the value from the virtual register before the next
write to that virtual register. An owner cluster is a cluster 405
that is said to “own” a particular live range of a virtual register.
The result of step 602 is a list of all virtual register live ranges
and corresponding owner clusters.

In steps 604, 606, and 608, compiler 101 transforms origi-
nal instructions that write to and read from virtual registers.
Instructions that read from or write to virtual registers
include, without limitation, any instructions that assign a
value to (write) a virtual register or that read a value from
(read) a virtual register, and could include, for example, arith-
metic instructions that assign a result to a virtual register
(write) as well as read a result from (read) a virtual register. A
single instruction may both write to and read from virtual

10

15

20

25

30

35

40

45

50

55

60

65

14

registers. Such an instruction is analyzed multiple times, once
for each virtual register that is the subject of a read or write.

In step 604, compiler 101 transforms write instructions that
are assigned to a cluster that is also the owner cluster of the
virtual register to which the write instruction writes. In step
606, compiler 101 transforms read instructions that are
assigned to a cluster that is not the owner cluster of the virtual
register from which the read instruction reads. In step 608,
compiler 101 transforms write instructions that are assigned
to a cluster that is not the owner cluster of the virtual register
to which the write instruction writes.

FIG. 7 sets forth a flow diagram of method steps for assign-
ing owner clusters, described in step 602 of FIG. 6, according
to one embodiment of the present invention. Although the
method steps are described in conjunction with FIGS. 1-4,
persons skilled in the art will understand that any system
configured to perform the method steps, in any order, falls
within the scope of the present invention.

As shown, a method 700 begins in step 702, where com-
piler 101 obtains a next virtual register live range. As is
known, a live range comprises a range of accesses to a virtual
register that begins with a write of a value to the virtual
register and ends with the last read of the value from the
virtual register before the next write to that virtual register. A
virtual register live range therefore comprises all instructions,
assigned to any cluster 405, that access the virtual register in
a particular live range. Virtual registers may have multiple
live ranges. Therefore, because the flow diagram in FIG. 7
loops, step 702 may be performed multiple times for any
given virtual register.

In step 704, compiler 101 counts the number of accesses by
instructions assigned to each cluster 405 for the virtual reg-
ister live range. In step 706, compiler 101 assigns an owner
cluster to the virtual register live range as the cluster 405 to
which the most instructions that access the virtual register live
range are assigned. In step 708, compiler 101 checks to see if
there are any virtual register live ranges left. If there are
virtual register live ranges left, the method 700 loops back to
step 702 again. If there are no virtual register live ranges left,
the method 700 advances to step 604.

FIG. 8 sets forth a flow diagram of method steps for trans-
forming owner cluster write operations, described in step 604
of FIG. 6, according to one embodiment of the present inven-
tion. Although the method steps are described in conjunction
with FIGS. 1-4, persons skilled in the art will understand that
any system configured to perform the method steps, in any
order, falls within the scope of the present invention.

As shown, a method 800 begins in step 802, where com-
piler 101 obtains the next write instruction that is assigned to
a cluster that is also the owner cluster of the virtual register to
which the write instruction writes in a particular live range. In
step 804, compiler 101 checks whether there are any non-
owner cluster reads of the virtual register in the live range. In
other words, compiler 101 checks whether there are any
instructions assigned to a non-owner cluster of the virtual
register in the live range, that read from the virtual register in
the live range. If there are non-owner cluster reads of the
virtual register in the live range, method 600 advances to step
806. If there are no non-owner cluster reads of the virtual
register in the live range, method 600 loops back to step 802.

In step 806, compiler 101 inserts an instruction, after the
write instruction, to copy the value in the virtual register to a
global virtual register. The global virtual register is used to
make the value in the virtual register available to clusters that
are not owners of the virtual register in the live range.

In step 808, compiler 101 checks whether there are any
more owner cluster writes left. In other words, compiler 101

US 9,229,717 B2

15

checks whether there are any more instructions that are
assigned to a cluster that is also the owner cluster of the virtual
register to which the write instructions write in a particular
live range. If there are any owner cluster writes left, the
method 800 loops back to step 802. If there are no more owner
cluster writes left, the method 800 proceeds to step 606.

FIG. 9 sets forth a flow diagram of method steps for trans-
forming non-owner cluster read operations, described in step
606 of FIG. 6, according to one embodiment of the present
invention. Although the method steps are described in con-
junction with FIGS. 1-4, persons skilled in the art will under-
stand that any system configured to perform the method steps,
in any order, falls within the scope of the present invention.

As shown, a method 900 begins in step 902, where com-
piler 101 obtains the next read instruction that is assigned to
a cluster that is not the owner cluster of the virtual register
from which the read instruction reads in a particular live
range.

In step 904, compiler 101 checks whether there are mul-
tiple non-owner cluster reads of the virtual register in the live
range. In other words, the compiler 101 checks whether there
are multiple read instructions of the virtual register in the live
range that are also assigned to the cluster to which the read
instruction obtained in step 902 is assigned. If there are not
multiple non-owner cluster reads of the virtual register in the
live range, method 900 proceeds to step 906. If there are
multiple non-owner cluster reads of the virtual register in the
live range, method 900 proceeds to step 908.

In step 906, compiler 101 alters the read instruction
obtained in step 902, such that instead of reading from the
virtual register, the read instruction instead reads from a cor-
responding global register. The corresponding global register
is the register that is the target of the instruction inserted by
compiler 101 in step 806. As stated above with respect to step
806, the corresponding global register is used to make the
value in the virtual register referred to in step 806 available to
clusters that are not owners of that virtual register, such as the
non-owner cluster referred to in step 902.

In step 908, compiler 101 checks whether the read instruc-
tion obtained in step 902 is the first read instruction assigned
to its cluster. If the read instruction obtained in step 902 is the
first read instruction assigned to its cluster, compiler 101
performs step 910. If the read instruction is not the first read
instruction assigned to its cluster, compiler 101 performs step
912.

In step 910, compiler 101 inserts an instruction, before the
read instruction, to copy the value from a corresponding
global register into a new virtual register. Compiler 101 also
alters the read instruction to read from the new virtual register,
instead of the virtual register that the read instruction origi-
nally read from. The corresponding global register is the
register that is the target of the instruction inserted by com-
piler 101 in step 806. As stated above with respect to step 806,
the global register is used to make the value in the virtual
register referred to in step 806 available to clusters that are not
owners of that virtual register, such as the non-owner cluster
referred to in step 902. In sum, in step 910, compiler 101
inserts instructions to bring a value from the global virtual
register referred to in step 806 into a new local virtual register,
and alters the read instruction to read from this local virtual
register.

In step 912, compiler 101 alters the read instruction
obtained in step 902 to read from a new virtual register,
instead of the virtual register that the read instruction origi-
nally read from. The new virtual register is the new local
virtual register referred to above with respect to step 910.
Since step 606 is performed on all read instructions, including

10

15

20

25

30

35

40

45

50

55

60

65

16

the first read instruction in a non-owner cluster, compiler 101
performs step 910 on the first read instruction in a non-owner
cluster, and inserts an instruction to copy a value from a global
virtual register to the new virtual register as described above
with respect to step 910. This new virtual register is also the
virtual register referred to in step 912.

After compiler 101 performs steps 906, 910 or 912, the
method advances to step 914. In step 914, compiler 101
checks whether there are any non-owner cluster reads left. In
other words, compiler 101 checks whether there are any read
instructions left that are assigned to a cluster that is not the
owner of the virtual register from which the instruction reads.
If there are any non-owner cluster reads left, method 900
loops back to step 902. If there are no non-owner cluster reads
left, method 900 advances to step 608.

FIG. 10 sets forth a flow diagram of method steps for
transforming non-owner cluster write operations, described
in step 608 in FIG. 6, according to one embodiment of the
present invention. Although the method steps are described in
conjunction with FIGS. 1-4, persons skilled in the art will
understand that any system configured to perform the method
steps, in any order, falls within the scope of the present inven-
tion.

As shown, a method 1000 begins in step 1002, where
compiler 101 obtains the next write instruction that is
assigned to a cluster that is not the owner of the virtual register
to which the write instruction writes, in a particular live range.

In step 1003, the compiler 101 checks whether there are
any read instructions assigned to the same non-owner cluster
that reads from the virtual register in the live range. If there are
reads assigned to the same non-owner cluster that reads from
the virtual register in the live range, the method proceeds to
step 1004. If there are no reads assigned to the same non-
owner cluster that reads from the virtual register in the live
range, the method proceeds to step 1005.

In step 1004, compiler 101 alters the write instruction such
that it writes to a new virtual register instead of the virtual
register that it originally wrote to. In step 1006, compiler 101
inserts a first copy instruction, after the write instruction, that
copies the value from the new virtual register to a correspond-
ing global virtual register. In step 1008, compiler 101 inserts
a second copy instruction, after the first copy instruction, to
copy the value from the corresponding global virtual register,
to the virtual register to which the write instruction obtained
in step 1002 originally wrote.

In step 1005, compiler 101 alters the write instruction to
write to a corresponding global virtual register. Next, in step
1007, compiler 101 inserts a copy instruction, after the write
instruction, to copy the value from the corresponding global
virtual register to the virtual register. By performing steps
1005 and 1007, the compiler copies the value written by the
non-owner cluster back to the virtual register in the owner
cluster. After performing steps 1008 or 1007, compiler 101
performs step 1010.

In step 1010, compiler 101 checks whether there are any
more non-owner cluster writes left. In other words, compiler
101 checks whether there are any write instructions that are
assigned to clusters that do not own the virtual register to
which the write instruction writes. If there are non-owner
cluster writes left, the method loops back to step 1002. Ifthere
are no non-owner cluster writes left, the method advances to
step 520.

As set forth below, FIGS. 11-12 illustrate a first example of
how the techniques presented above in connection with FIGS.
5-10 can be applied. FIGS. 13-14 then illustrate a second
example of how the techniques presented above in connection
with FIGS. 5-10 can be applied.

US 9,229,717 B2

17

FIG. 11 is a block diagram depicting example code seg-
ments both before and after virtual register partitioning,
according to one embodiment of the present invention. FIG.
11 depicts code segments having instructions in a virtual
instruction set that have been assigned to three different clus-
ters, C1, C2, and C3. FIG. 11 depicts instructions that, prior to
virtual register partitioning, access a virtual register, VR1,
within a single live range, 1104. The instructions shown are
either writes, depicted with symbol “W” or reads, depicted
with symbol “R.” Writes comprise any instruction that writes
a value to VR1. Reads comprise any instruction that reads a
value from VR1. Other instructions may be present, but are
not described, and are depicted with the symbol “*”.

Code segments 1102-1, 1102-2, and 1102-3 comprise
instructions that have not been modified by virtual register
partitioning. Instructions 1106 are assigned to cluster C1,
instructions 1108 and 1110 are assigned to cluster C2, and
instructions 1112 are assigned to cluster C3. All of instruc-
tions 1106, 1108, 1110, and 1112 access the same virtual
register, register VR1. Moreover, a live range 1104 for virtual
register VR1 is shown. The live range 1104 extends from
instruction 1108, the first write of VR1, to instruction 1110,
the last read of VR1.

Code segments 1122-1, 1122-2, and 1122-3 comprise
instructions that have been modified by virtual register parti-
tioning. Instructions 1126 are assigned to cluster C1, instruc-
tions 1128 and 1130 are assigned to cluster C2, and instruc-
tions 1132 are assigned to cluster C3. Instructions 1126,
1128, 1130, and 1132 correspond to instructions 1106, 1208,
1110, and 1112, respectively.

The owner cluster is cluster C1. In code segment 1102-1,
there are three accesses to VR1 in the live range 1104. In code
segment 1102-2, there are two accesses to VR1 in the live
range 1104. In code segment 1102-3, there is one access to
VR1 in the live range 1104. Instructions assigned to cluster
C1, which are in code segment 1102-1, have the most
accesses to VR1 in the live range 1104. Therefore, cluster C1
is the owner cluster of VR1 in live range 1104.

Code segment 1102-1 comprises read instructions 1106.
Because cluster C1 is the owner cluster, reads assigned to
cluster C1, comprising instructions 1106 which read from
VR1, are not modified. VR1 is a local virtual register for its
owner cluster, cluster C1. Thus read instructions 1126 are the
same as read instructions 1106.

Code segment 1102-2 comprises write instructions 1108
and read instructions 1110. Write instructions 1128 are a
modified version of write instruction 1108. Write instructions
1128 write a value to a new local virtual register, VR2. VR2 is
alocal virtual register that is local to cluster C2. Write instruc-
tions 1128 also copy the value written to VR2 into VR1,
which is the local virtual register for cluster C1. Copying the
value from VR2 into VR1 is not done directly, but is done
through the use of a global virtual register, MVR0. Therefore,
write instructions 1128 copy the value first to global virtual
register MVRO by the instruction “MOV MVRO0, VR2” and
then to the virtual register VR1 by the instruction “MOV VR1,
MVRO0.” Read instructions 1130 read from the new virtual
register, register VR2, which is the local virtual register for
cluster C2.

Code segment 1102-3 comprises only one instruction—
read instruction 1112. Because no other instructions in code
segment 1102-3 utilize VR1 in live range 1104, read instruc-
tion 1132 reads directly from the global virtual register
MVRO.

FIG. 12 is a block diagram of a multi-level register file
hierarchy 1200, according to one embodiment of the present
invention. FIG. 12 is discussed with reference to FIG. 11.

10

15

20

25

30

35

40

45

50

55

60

65

18

Cluster C1 has local register file 1206-1, cluster C2 has local
register file 1206-2, and cluster C3 has local register file
1206-3. Master register file 1210 is also present and acces-
sible by clusters C1, C2, and C3. Local virtual register VR1 is
assigned to physical register 1208-1 in cluster C1, local vir-
tual register VR2 is assigned to a physical register 1208-2 in
cluster C2, and global virtual register MVRO is assigned to a
physical register 1212 in the master register file 1210. Arrows
1214, 1216, and 1218 indicate accesses of values in physical
registers by instructions 1126, 1128, 1130, and 1132 (in FIG.
11), assigned to clusters C1, C2, and C3.

Arrow 1214-1 corresponds to instructions 1126, which
read the value stored in physical register 1208-1. Arrow
1216-1 corresponds to instructions 1128 and 1130. A value is
written to the physical register 1208-2 in 1128 and read from
physical register 1208-2 in 1130. Arrow 1216-2 corresponds
to the copy instruction (“MOV™) in instructions 1128 that
copies the value from physical register 1208-2 to physical
register 1212. Arrow 1216-3 corresponds to the first copy
instruction in instructions 1128, which copies the value in
physical register 121 to physical register 1208-1. Arrow 1218
corresponds to the read instruction 1132, which reads from
physical register 1212.

FIG. 13 is a block diagram depicting example code seg-
ments both before and after virtual register partitioning,
according to one embodiment of the present invention. FIG.
13 depicts code segments having instructions in a virtual
instruction set that have been assigned to three different clus-
ters, C1, C2, and C3. FIG. 13 focuses on instructions that,
prior to virtual register partitioning, access a single virtual
register, VR1, but within two different live ranges, 1304-1 and
1304-2. The instructions shown are either writes, depicted
with symbol “W” or reads, depicted with symbol “R.” Writes
comprise any instruction that writes a value to VR1. Reads
comprise any instruction that reads a value from VR1. Other
instructions may be present, but are not described, and are
depicted with the symbol “”.

Code segments 1302-1, 1302-2, and 1302-3 comprise
instructions that have not been modified by virtual register
partitioning. Instructions 1306 and 1308 are assigned to clus-
ter C1, instructions 1310, 1312, and 1314 are assigned to
cluster C2, and instructions 1316 and 1318 are assigned to
cluster C3. All of instructions 1306, 1308, 1310, 1312, 1314,
1316, and 1318 access the same virtual register, register VR1.
However, instructions 1306, 1310, and 1316 are in a first live
range 1304-1, while instructions 1308, 1314, and 1318 are in
asecond live range 1304-2. There are two live ranges 1304-1,
1304-2 for virtual register VR1 because there are two differ-
ent writes to VR1—instruction 1310 is a first write and 1318
is a second write. The first live range 1304-1 extends from the
first write 1310 until the last read 1312 before the next write
1318, and the second live range 1304-2 extends from the
second write 1318 until the last read 1308.

Code segments 1322-1, 1322-2, and 1322-3 comprise
instructions that have been modified by virtual register parti-
tioning. Instructions 1326 and 1328 are assigned to cluster
C1, instructions 1330, 1332, and 1334 are assigned to cluster
C2, and instructions 1336 and 1338 are assigned to cluster C3.
Instructions 1326, 1328, 1330, 1332, 1334, 1336, and 1338
correspond to instructions 1306, 1308, 1310, 1312, 1314,
1316, and 1318, respectively.

For the first live range 1304-1, the owner cluster is cluster
C2. In code segment 1302-1, there is one access to VR1 in the
live range 1304-1. In code segment 1302-2, there are two
accesses to VR1 in the live range 1304-1. In code segment
1302-3, there is one access to VR1 in the live range 1304-1.
Instructions assigned to cluster C2 in the live range 1304-1,

US 9,229,717 B2

19

have the most accesses to VR1 in the live range 1304-1.
Therefore, cluster C2 is the owner cluster of VR1 in live range
1304-1. In live range 1304-1, there is only one instruction that
accesses VR1 assigned to cluster C1. Therefore, instruction
1326 reads directly from a global virtual register MVRO. In
the live range 1304-1, the first instruction in cluster C2 is
write instruction 1310. Therefore, instructions 1330 include a
copy instruction to copy the value from VR1 to the global
virtual register MVRO. Neither the write instruction in 1330
nor the read instruction 1332 is modified, as C2 is the owner
cluster of VR1 in live range 1324-1. In the live range 1304-1,
the only instruction assigned to cluster C3 is a read instruc-
tion. Therefore, instruction 1336 reads directly from the glo-
bal virtual register MVRO.

For the second live range 1304-2, the owner cluster is
cluster C2. In code segment 1302-1, there is one access to
VR1 in the live range 1304-2. In code segment 1302-2, there
are two accesses to VR1 in the live range 1304-2. In code
segment 1302-3, there is one access to VR1 in the live range
1304-2. Instructions assigned to cluster C2 in the live range
1304-2, have the most accesses to VR1 in the live range
1304-1. Therefore, cluster C2 is the owner cluster of VR1 in
live range 1304-2. In live range 1304-2, there is only one
instruction that accesses VR1 assigned to cluster C1. There-
fore, instruction 1328 reads directly from a global virtual
register MVRO. In the live range 1304-2, the instructions in
cluster C2 are both read instructions. Instructions 1334 are
identical to instructions 1314, as C2 is the owner cluster of
VR1 in live range 1324-2. In the live range 1304-2, the only
instruction assigned to cluster C3 is a write instruction.
Therefore, instructions 1338 write directly to the global vir-
tual register MVRO0, and then copy the value in MVRO0 to VR1
for the owner cluster, cluster C2.

FIG. 14 is a block diagram of a multi-level register file
hierarchy 1400, according to one embodiment of the present
invention. FIG. 14 is discussed with reference to FIG. 13.
Cluster C1 has local register file 1406-1, cluster C2 has local
register file 1406-2, and cluster C3 has local register file
1406-3. Master register file 1410 is also present and acces-
sible by clusters C1, C2, and C3. Local virtual register VR1 is
assigned to physical register 1408 in cluster C1, and global
virtual register MVRO is assigned to a physical register 1412
in the master register file 1410. The same physical register
1408 in cluster C2 can be used for VR1 in both live ranges
1304-1 and 1304-2, because live ranges 1304-1 and 1304-2
do not overlap. Similarly, the same physical register 1412 in
master register file 1410 can be used for MVRO in both live
ranges 1304-1 and 1304-2, because live ranges 1304-1 and
1304-2 do not overlap. Arrows 1414, 1416, and 1318 indicate
accesses of values in physical registers by instructions 1326,
1328, 1330, 1332, 1334, 1336, and 1338 (in FIG. 11),
assigned to clusters C1, C2, and C3.

Arrow 1414 corresponds to instructions 1326 and 1328,
which both read the value stored in physical register 1412.
Arrow 1416-1 corresponds to instructions 1330 and 1338, in
which a value is copied from VR1 to MVRO, and in which a
value is copied from MVRO to VR1. Arrow 1416-2 corre-
sponds to instructions 1330, which writes a value to VR1, and
to instructions 1332 and 1334, which read the value from
VRI1. Arrow 1418 corresponds to instructions 1336 and 1338,
which read a value from MVRO0 and write a value to MVRO.

In sum, in accordance with the teachings presented herein,
a compiler modifies program code that contains instructions
to read data from and write data to virtual registers, to advan-
tageously allocate virtual registers to physical registers in a
multiple-level register file hierarchy. A multiple-level register
file hierarchy comprises physical registers and may be imple-

30

35

40

45

20

mented in hardware in a streaming multiprocessor having a
plurality of clusters. Each cluster has one or more functional
units for processing instructions. Further, each cluster has a
low-level register file that is accessible directly only by the
functional units in the processing cluster. A high-level register
file is present in the streaming multiprocessor, and is acces-
sible directly by all clusters.

The compiler analyzes program code having instructions
that read from or write to virtual registers and allocates each
of'these instructions to a corresponding cluster. The compiler
then determines virtual register live ranges and assigns owner
clusters to each virtual register live range based on the number
of virtual register accesses (reads or writes) by each cluster
for each virtual register live range. The compiler then modi-
fies instructions in the program code that access virtual reg-
isters such that values in the virtual registers can be stored in
the low-level register file of the owner clusters. The compiler
modifies instructions that are assigned to owner clusters and
instructions that are assigned to non-owner clusters.

The compiler modifies instructions that are assigned to
owner clusters such that values in virtual registers that are
allocated to owner clusters are stored in “local virtual regis-
ters” that are local to the owner clusters. For instructions
assigned to the owner clusters that write a value to the local
virtual registers, the compiler inserts an additional instruction
to copy the value from the local virtual register to a corre-
sponding “global virtual register,” such that the value in the
local virtual register is accessible to non-owner clusters.

The compiler also modifies instructions that are assigned to
non-owner clusters and that access values in a virtual register
allocated to an owner cluster. Specifically, the compiler modi-
fies instructions assigned to a non-owner cluster that read or
write values in a local virtual register allocated to an owner
cluster such that the instructions assigned to the non-owner
cluster read or write values from the corresponding global
virtual register instead.

Local virtual registers are later allocated to physical regis-
ters in low-level register files, while global virtual registers
are later allocated to physical registers in high-level register
files.

One advantage of the techniques provided herein is that the
disclosed technique can configure instructions that access
registers in a multiple-level register file hierarchy such that
registers that are accessed often can be allocated to physical
registers in a local register file.

One embodiment of the invention may be implemented as
a program product for use with a computer system. The pro-
gram(s) of the program product define functions of the
embodiments (including the methods described herein) and
can be contained on a variety of computer-readable storage
media. [llustrative computer-readable storage media include,
but are not limited to: (i) non-writable storage media (e.g.,
read-only memory devices within a computer such as com-
pact disc read only memory (CD-ROM) disks readable by a
CD-ROM drive, flash memory, read only memory (ROM)
chips or any type of solid-state non-volatile semiconductor
memory) on which information is permanently stored; and
(i) writable storage media (e.g., floppy disks within a diskette
drive or hard-disk drive or any type of solid-state random-
access semiconductor memory) on which alterable informa-
tion is stored.

The invention has been described above with reference to
specific embodiments. Persons of ordinary skill in the art,
however, will understand that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the

US 9,229,717 B2

21

appended claims. The foregoing description and drawings
are, accordingly, to be regarded in an illustrative rather than a
restrictive sense.
Therefore, the scope of embodiments of the present inven-
tion is set forth in the claims that follow.
The claimed invention is:
1. A method of allocating registers within a processing unit,
the method comprising:
assigning a plurality of instructions to a plurality of pro-
cessing clusters, wherein each instruction is configured
to access a first virtual register within a live range;

determining which processing cluster in the plurality of
processing clusters is an owner cluster for the first virtual
register within the live range; and

configuring a first instruction included in the plurality of

instructions to access a first global virtual register,
wherein the first instruction is assigned to the owner
cluster.

2. The method of claim 1, wherein the first instruction is
configured to implement a write operation to the first virtual
register.

3. The method of claim 2, wherein:

the first instruction has a corresponding location in a pro-

gram control flow; and

configuring the first instruction comprises:

determining that an instruction assigned to a non-owner
cluster is configured to implement a read operation
from the first virtual register; and

inserting a copy instruction after the corresponding loca-
tion in the program control flow of the first instruc-
tion, wherein the copy instruction is configured to
implement a copy operation that copies a value in the
first virtual register to the first global virtual register.

4. The method of claim 1, wherein the first instruction is
configured to implement a write operation to the first virtual
register and is assigned to a non-owner cluster.

5. The method of claim 4, wherein:

the first instruction has a corresponding location in a pro-

gram control flow; and

configuring the first instruction comprises:

configuring the first instruction to implement a write
operation to a second virtual register;

inserting a first copy instruction after the corresponding
location in the program control flow of the first
instruction, wherein the first copy instruction is con-
figured to implement a copy operation that copies a
value in the second virtual register to the first global
virtual register; and

inserting a second copy instruction, after the first copy
instruction, wherein the second copy instruction is
configured to implement a copy operation that copies
a value in the first global virtual register to the first
virtual register.

6. The method of claim 1, wherein the first instruction is
configured to implement a read operation from the first virtual
register and is assigned to a non-owner cluster.

7. The method of claim 6, wherein configuring the first
instruction comprises:

determining that there is only one read instruction that is

configured to implement a read operation from the first
virtual register and that is assigned to the non-owner
cluster in the live range; and

configuring the first instruction to implement a read opera-

tion from the first global virtual register.

8. The method of claim 6, wherein:

the first instruction has a corresponding location in a pro-

gram control flow; and

10

20

30

35

40

45

50

55

60

65

22

configuring the first instruction comprises:
determining that there is a plurality of read instructions
that are configured to read from the first virtual reg-
ister in the live range and that are assigned to the
non-owner cluster;
inserting a first copy instruction before the correspond-
ing location in the program control flow of the first
instruction, wherein the first copy instruction is con-
figured to copy a value in the first global register to a
second virtual register; and
configuring the plurality of read instructions to imple-
ment a read operation from the second virtual register.
9. The method of claim 1, further comprising allocating the
first virtual register to a physical register in the owner cluster.
10. A non-transitory computer-readable medium storing
instructions, that when executed by a processor, cause a com-
puter system to allocate registers within a processing unit, by
performing the steps of:
assigning a plurality of instructions to a plurality of pro-
cessing clusters, wherein each instruction is configured
to access a first virtual register within a live range;

determining which processing cluster in the plurality of
processing clusters is an owner cluster for the first virtual
register within the live range; and

configuring a first instruction included in the plurality of

instructions to access a first global virtual register,
wherein the first instruction is assigned to the owner
cluster.

11. The non-transitory computer-readable medium of
claim 10, wherein the first instruction is configured to imple-
ment a write operation to the first virtual register.

12. The non-transitory computer-readable medium of
claim 11, wherein:

the first instruction has a corresponding location in a pro-

gram control flow; and

configuring the first instruction comprises:

determining that an instruction assigned to a non-owner
cluster is configured to implement a read operation
from the first virtual register; and

inserting a copy instruction after the corresponding loca-
tion in the program control flow of the first instruc-
tion, wherein the copy instruction is configured to
implement a copy operation that copies a value in the
first virtual register to the first global virtual register.

13. The non-transitory computer-readable medium of
claim 10, wherein the first instruction is configured to imple-
ment a write operation to the first virtual register and is
assigned to a non-owner cluster.

14. The non-transitory computer-readable medium of
claim 13, wherein:

the first instruction has a corresponding location in a pro-

gram control flow; and

configuring the first instruction comprises:

configuring the first instruction to implement a write
operation to a second virtual register;

inserting a first copy instruction after the corresponding
location in the program control flow of the first
instruction, wherein the first copy instruction is con-
figured to implement a copy operation that copies a
value in the second virtual register to the first global
virtual register; and

inserting a second copy instruction, after the first copy
instruction, wherein the second copy instruction is
configured to implement a copy operation that copies
a value in the first global virtual register to the first
virtual register.

US 9,229,717 B2

23

15. The non-transitory computer-readable medium of
claim 10, wherein the first instruction is configured to imple-
ment a read operation from the first virtual register and is
assigned to a non-owner cluster.

16. The non-transitory computer-readable medium of
claim 15, wherein configuring the first instruction comprises:

determining that there is only one read instruction that is

configured to implement a read operation from the first
virtual register and that is assigned to the non-owner
cluster in the live range; and

configuring the first instruction to implement a read opera-

tion from the first global virtual register.

17. The non-transitory computer-readable medium of
claim 15, wherein:

the first instruction has a corresponding location in a pro-

gram control flow; and

configuring the first instruction comprises:

determining that there is a plurality of read instructions
that are configured to read from the first virtual reg-
ister in the live range and that are assigned to the
non-owner cluster;

inserting a first copy instruction before the correspond-
ing location in the program control flow of the first
instruction, wherein the first copy instruction is con-
figured to copy a value in the first global register to a
second virtual register; and

configuring the plurality of read instructions to imple-
ment a read operation from the second virtual register.

18. The non-transitory computer-readable medium of
claim 10, further comprising allocating the first virtual regis-
ter to a physical register in the owner cluster.

19. A computing device for allocating registers within a
processing unit, the computing device comprising:

a processor; and

a memory coupled to the processor, wherein the memory

includes a compiler having instructions that, when

executed by the processor, cause the processor to:

assign a plurality of instructions to a plurality of pro-
cessing clusters, wherein each instruction is config-
ured to access a first virtual register within a live
range;

10

15

20

30

35

24

determine which processing cluster in the plurality of
processing clusters is an owner cluster for the first
virtual register within the live range; and

configure a first instruction included in the plurality of

instructions to access a first global virtual register,
wherein the first instruction is assigned to the owner
cluster.

20. The computing device of claim 19, wherein:

the first instruction is configured to implement a write

operation to the first virtual register;

the first instruction has a corresponding location in a pro-

gram control flow; and

configuring the first instruction comprises:

determining that an instruction assigned to a non-owner
cluster is configured to implement a read operation
from the first virtual register; and
inserting a copy instruction after the corresponding loca-
tion in the program control flow of the first instruction,
wherein the copy instruction is configured to implement
a copy operation that copies a value in the first virtual
register to the first global virtual register.
21. A non-transitory computer-readable medium storing
instructions, that when executed by a processor, cause a com-
puter system to allocate registers within a processing unit, by
performing the steps of:
assigning a plurality of instructions to a plurality of pro-
cessing clusters, wherein each instruction is configured
to access a first virtual register within a live range;

determining which processing cluster in the plurality of
processing clusters is an owner cluster for the first virtual
register within the live range; and

configuring a first instruction included in the plurality of

instructions to access a first global virtual register con-
figuring a first instruction included in the plurality of
instructions to access a first global virtual register,
wherein the first instruction is configured to implement
a write operation to the first virtual register and is
assigned to the owner cluster.

#* #* #* #* #*

